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Abstract—Negative weights in ordinary kriging (OK) arise when data close to the location being estimated
screen outlying data. Depending on the variogram and the amount of screening, the negative weights can
be significant; there is nothing in the OK algorithm that alerts the kriging system about the zero threshold
for weights. Negative weights, when interpreted as probabilities for constructing a local conditional
distribution, are nonphysical. Also, negative weights when applied to high data values may lead to negative
and nonphysical estimates. In these situations the negative weights in ordinary kriging must be corrected.

An algorithm is presented to reset negative kriging weights, and compensating positive weights to zero.
The sum of the remaining nonzero weights is restandardized to 1.0 to ensure unbiasedness. The situations
when this correction is appropriate are described and a number of examples are given. Copyright © 1996

Elsevier Science Ltd.
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INTRODUCTION

Kriging is a nonconvex estimation technique. Nega-
tive kriging weights applied to “‘extreme” values
can lead to kriging estimates outside the range of
the observed data. This feature may be desirable
when working with smooth variables such as surface
elevations or isopach values. In other situations, a
nonconvex estimator causes problems such as non-
physical estimates (negative probabilities, probabili-
ties greater than one, negative porosities, or negative
thicknesses). In these situations one would like an
estimator that maintains the attractive features of
kriging (declustering and variogram-distance weight-
ing) and yel ensures no negative weights, thus ensur-
ing convexity.

The approach taken here is to correct the kriging
weights a posteriori. That is, the ordinary kriging
weights are determined and then negative weights and
some related small positive weights are reset to zero.
The reason for correcting some positive weights is
that data locations beyond the locations with nega-
tive weights may receive a small compensating posi-
tive weight; the weights can oscillate. These small
positive weights should be reset to zero along with the
negative weights.

THE PROPOSED ALGORITHM

Consider the estimate of an unsampled value z(u)
from neighboring data values z(u,),x = 1, ..., n The
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ordinary kriging (OK) estimator is written

23 ()=} 4,(u) z(u,). (1
a=]

The weights A,(u) are determined to minimize
the error variance subject to the unbiasedness con-
straint ] _, 4,(u) = 1, see Deutsch and Journel (1992,
p. 63).

The subset of locations where the OK weight is
negative (4;<0) may be determined w;, f=
l,...,n". The average absolute magnitude of the
negative weights

e
K== 5 14 @
n' {2
and the average covariance between the location
being estimated w and the locations receiving negative
weight
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may be calculated. If the covariance function C(h)
decreases monotonically to zero then, for each direc-
tion, there is a distance d * such that C(d") = C. When
the covariance is isotropic then d’ is a constant that
does not depend on direction.

The set of OK weights 4,, a=1,...
rected as follows:

41 are cor-

(1) 23=4,
(2) if 4, <0 then A, =0
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Figure 1. A. Ordinary kriging weights B. Corrected weights applied to eight-data configuration. Radius
of circle around location being estimated corresponds to average covariance of samples receiving negative
weights.

(3) if 4,>0 and C(u—wu,)<C and A, <7 then
ii=0.

The corrected weights are restandardized to sum to
one

2l
LA
The corrected estimate of the unsampled value z(u)
is then

Lca=1,....n 4)

A=Y v,wz(w,). 5
a=1
The code required to implement this correction in
the GSLIB software is available from the Computers
& Geosciences ftp server, IAMG.ORG.

A SMALL EXAMPLE

Figure 1A shows the data configuration used in
Part A of Problem Set Three in GSLIB, see Deutsch
and Journel (1992, p.108). The ordinary kriging
weights shown on the left were obtained with an
isotropic spherical variogram model with no nugget
effect and a range of ten distance units equal to the
side of the enclosing square. The location being
estimated is annotated with the black cross. The three
outermost sample locations in the cluster of five data
receive negative weights.

These negative weights reflect the screening of the
three remote data points by the set of two data
locations in front of them. That screening effect is
accentuated by the zero nugget effect of the vari-
ogram model adopted. There is nothing in the OK
algorithm that alerts the kriging system about the

importance of the zero threshold for the weights.
Such negative weights if applied to elevated data
values may lead to negative and nonphysical esti-
mates. Such estimates are said to be nonconvex
because they lie outside the range of data values used.

There are many options to impose a priori the
convexity condition into the kriging system, either
requiring that all weights be nonnegative or requiring
that the resulting linear estimate be within the data
range, Barnes and Johnson (1984). Another option
consists of using the E-type estimate of indicator
kriging, Journel (1986), although the probability
estimates of indicator kriging itself might have
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Figure 2. Five ordinary kriging weights excluding three data
points that received negative weights in Fig. 1A.
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Figure 3. A. Ordinary kriging weights B. Corrected weights applied to eight-data configuration.
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Figure 4. A, Ordinary kriging weights B. Corrected weights applied to nine-data configuration.
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Figure 5. Ordinary kriging weights and corrected weights

applied to 27-data configuration.

Figure 6. Profile of ordinary kriging weights vs distance

(from Fig. 5).
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Figure 7. Location map of 140 data used for estimation of
50 by 50 grid,

to be corrected for nonconvexity-induced order
relation problems. As another option, and a very fast
one both to implement and CPU-wise, a direct
(a posteriori) correction of the original OK weights is
proposed here.

The correction amounts to resetting the negative
weights to zero and restandardizing the remaining
weights to sum to one; the corrected weights are
shown on the right side of Figure 1. The radius of the
circle around the location being estimated is the
distance d ' corresponding to the average covariance
of the samples receiving negative weights. No
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location outside the circle is given a positive weight
by the original OK system.

For comparison purposes, ordinary kriging was
repeated after removing the three locations that
originally received negative weight. These weights,
shown on Figure 3, may be compared to the corrected
weights shown on Figure 2. There is close agreement.

Figure 3 shows the OK and corrected weights that
would be obtained for estimating a location one
distance unit to the left of the previous example. The
same variogram model and data were considered.
Note that the datum to the extreme right (receiving
an original OK weight of 0.102) is not reset to zero,
even though it is less correlated to the location being
estimated than the data receiving negative weight,
that is C < C. The weight is not reset because the
kriging weight (0.102) is greater than 4°, the average
absolute negative weight (0.0064).

Figure 4 shows OK and corrected weights that
would be obtained if a data point i1s added in the
upper right quadrant (receiving an OK weight of
0.020). In this example, the new data location and the
location to the far right (OK weight of 0.090) are
beyond the distance corresponding to €. Only the
small weight is reset because it is smaller than the
average absolute weight (0.071).

To illustrate further negative weights and their
associated small compensating positive weights,
consider the 27-point data configuration shown on
Figure 5. Note the negative weights and the small
positive weights (all positive weights are shown with
a gray circle). A profile of these ordinary kriging
weights through the dense cluster of data is shown on
Figure 6. Also shown on Figure 6 are the corrected
kriging weights.

Parameters for KB2D
2SS S SRS RS S E R SRS

START OF PARAMETERS:

Figure 8. Parameter file for kb2d.

parta.dat \file with data
| 2 3 \ columns for X, Y, and variable
-0.01 9999.0 \ trimming limits
kb2d.out \file for kriged output
3 \debugging level: 0,1,2,3
kb2d.dbg \file for debugging output
kb2d. loc \file for weights
1 42.0 10.0 \X grid specification: nx, xmn, Xsiz
1 29.0 10.0 \Y grid specification: ny, ymn, ysiz
1 1 \x and y block discretization
i 2.5 \0=8K, 1=0K, 2=convex SK, 3=convex OK
4 16 \min and max data for kriging
20.0 \maximum search radius
3 0.0 \nst, nugget effect
1 =, 0.0 10.0 10.0 1. \it, ¢, azm, a_max, a_min, power
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Number of Data 31901

-| mean 0.078
std. dev. 0.186
coef. of var undefined

012 maximum 1.0
=1 upper quartile 0.095
median 0.0

lower quartile -0.024
minimum -0.183

Frequency
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A - OK Weight

Number of Data 31901

. mean 0.078
- std. dev. 0.157
coef. of var 2.018

maximum 1.0
upper quartile 0.079
median 0.0
lower quartile 0.0
1 minimum 0.0

Frequency
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Figure 9. A. Histograms of original OK weights B. Histograms of corrected weights assigned to all data

for kriging all locations of 50 by 50 grid shown on Figure 7.
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Figure 10. Scatterplot of OK estimates and corrected estimates.

KRIGING WITH THE GSLIB DATA

The set of 140 data used in the GSLIB book,
Deutsch and Journel (1992, p. 37) and Figure 7, were
used to estimate the attribute value on a regular 50
by 50 grid of points. The parameter file for kb2d (a
second edition program replacing okb2d, Deutsch
and Journel, 1992, p. 92) is shown on Figure 8. Out
of the possible 2500 locations, 2485 were estimated;
fifteen were left unestimated due to the minimum
number of data constraint and the automatic octant
search. On average, 12.8 data were used to make each
estimate with 6.3 negative weights (average value of
—0.032).

Frequency
—

Figure 9A shows the histogram of all original OK
weights and Figure 9B the corrected weights. Note
that (i) the average is exactly the same since both sets
of weights are subject to the constraint that the
weights sum to one, (ii) 60% of the corrected weights
are exactly 0.0, and (iii) the small spike of weights
equal to 1.0 is due to estimating at a datum location.
Figure 10 gives the scatterplot of corrected weights vs
original OK weights. The horizontal line at a cor-
rected weight of zero illustrates the significant
number of weights being corrected.

Figure 11 shows the histogram of the OK estimates
and the corrected estimates. There are 24 out of 2485

Number of Data 2485
number timmed 15

mean 2.211
std. dev. 3.148
coel. of var undefined

maximum 58.320
upper quartile 2.433
median 1.260
lower quartile 0.646
minimum -0.816

1
200

10.0
A - OK Estimate

Figure 11 A. Histogram of OK-estimated values for all locations (15 out of 2500 were not estimated).
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Frequency
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Number of Data 2485
number trimmed 15

mean 2.489
std. dev. 3.081
coef. of var 1.238

maximum 58.320
upper quartile 2.748
median 1.558
lower quartile 0.870
minimum 0.060

B - Corrected OK Estimate
Figure 11 B. Histograms of corrected values for all locations (15 out of 2500 were not estimated).

estimates that are negative (3.4%). The average
estimated value with the corrected weights is greater
(2.49 vs 2.21) than the original OK estimates. The
true mean is 2.58 and the declustered mean of the 140
data is 2.52. It should be pointed out that both OK
and the corrected estimator are unbiased because the
sum of the weights is constrained to be one.

A scatterplot of the corrected estimates vs the OK
estimates is shown on Figure 12. As expected, there
is a strong positive correlation (0.98) between the
estimates. A cross validation (each sample location
was estimated from its neighbors) was performed to

Carrected Estimate
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Figure 12. Scatterplot of corrected kriging estimate vs
ordinary kriging estimate.

assess the difference between these two estimators.
Figure 13 shows the histograms of errors. The mean
squared error (MSE) was 41.5 for OK and 38.7 for
the corrected estimator. Although the MSE for the
corrected estimator is better, it has a larger average
error (0.414 vs 0.250).

DISCUSSION

The correction proposed here should be limited
to situations where there is a good reason to disregard
negative weights, such as (i) when performing indi-
cator kriging of either a categorical variable or an
indicator transform of a continuous variable, (ii)
when the weights are interpreted as probabilities for
constructing a local conditional distribution, and (i)
when dealing with nonnegative attributes such as
concentrations and when extreme data values are
present.

The proposed correction could also be applied to
simple kriging (SK) weights. The sum of the SK
weights should be standardized along with the comp-
lement weight given to the global mean [1 — Z_, £,],
where &,, « = 1,...,n are the SK weights.

It should be noted also that the kriging variance
increases when the corrected weights are used. The
kriging variance of the corrected estimator may be
calculated by the general equation Var{Z*(u)} =
i Zf. vy(u)-vg(u)- Clu, —uy). In the context of
sequential Gaussian simulation (Deutsch and
Journel, 1992; Journel, 1989), the original simple
kriging variance should be used; otherwise, the
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0.25_] Number of Data 139
. mean 0.250
4 std. dev. 6.444
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Figure 13. Histograms of error values obtained A. with OK and B. with corrected weights.

variance of the simulated realizations will be inflated
due to using a kriging variance greater than the
theoretical SK variance.

CONCLUSIONS

In many situations, negative kriging weights lead to
nonphysical estimates. The algorithm proposed here
to correct negative OK weights and the related small

positive weights is simple and robust. The examples
have shown that the weights do not differ greatly
from the original OK weights and that the resulting
estimate is within the bounds of the available data.
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